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Univalent (Monodentate) Substitution on Convex Polyhedra 
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P61ya's enumeration theorem has been used to evaluate, by computer, the numbers N of distinct 
configurations (= positional isomers) produced by univalent (monodentate) substitution at the vertices 
of convex polyhedra of crystallographic or stereochemical interest. The values of N are tabulated for a 
large variety of polyhedra of up to V= 120 vertices and for up to V kinds of structureless substituents. 
The N have been evaluated not only for the maximum point-group symmetry of each polyhedron but 
also, for V< 24, for all the subgroup symmetries of the maximum point group. For V> 24 only polyhedra 
of cubic and icosahedral symmetries are included. An example shows how the tables of N can be used 
to enumerate pairs of enantiomorphs. The effect of symmetry on N for large values of V is examined. 
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Symbols and abbreviations X 

axial digyre (see text) p(G) 
Archimedean polyhedron (isogonal) p.g. 
Catalan polyhedron (dual to d ,  isohedral) ~@{ 
number of all non-isomorphic convex poly- v', v" 
hedra of maximum p.g. symmetry Ct and a V 
given V ~" 
diagonal digyre (see text) Z 
dual polyhedron 
number of edges A 
number of faces 
centre of symmetry; inversion H 
Kasper polyhedron 8-2 
mirror plane 
axial mirror plane (also in combinations maa 
and mad; see text) 
diagonal mirror plane (also in mdd; see text) 
horizontal mirror plane (also in combinations 
mha and mhd; see text) 
number of distinct configurations 
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number of all non-isomorphic convex poly- 
hedra of a given V 
order of the point group G 
point group 
Platonic polyhedron 
nonequivalent (vertical) mirror planes 
number of vertices 
vertex-figure derivative 
cycle index 
number of Z-isomorphic classes 
deltahedron (Freudenthal & van der Waerden, 
1947) 
partition 
running number of polyhedron of V=8 and 
maximum p. g. symmetry in Table 5 
running number of polyhedron of V=8 ob- 
tained from, or related to, 8-2 by lowering the 
p.g. symmetry from the maximum possible for 
8-2, 32, to 20 
running number of a p.g. in Table 3 

A problem of some importance in various branches of 
science is the determination of the number N of dis- 
tinct~ positional isomers that can be obtained by 

:l: Distinct positional isomers are not congruent with respect 
to rotation. 
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univalent substitution at the vertices of convex poly- 
hedra or their isomorphs; in coordination chemistry 
such substitution is called monodentate.* The numbers 
N are well known for small polyhedra of high symmetry 
that occur as coordination figures. They have been 
determined by calculation or by inspection, and tabu- 
lated for the square, the regular tetrahedron and octa- 
hedron (Main Smith, 1924; Trimble, 1954); the cube, 
the square antiprism, the dodecadeltahedron, and the 
bicapped trigonal prism (Marchi, Fernelius & McRey- 
nolds, 1943), always for the maximum p.g. symmetry. 
However, explicit listing of all the possible distinct 
configurations and their classification by symmetry is 
a task of some magnitude even for small values of V. 
Thus when V is large and when there are more than 
two kinds of substituents, knowledge of N is a pre- 
requisite to enumeration: it provides an advance 
measure of the practicability of listing and serves as 
a check in attempts to generate the configurations 
exhaustively by computer methods. The need to know 
N is even greater when substitution is considered on 
polyhedra that derive from the regular or semiregular 
bodies by the various reductions of the p.g. symmetry. 
In the following we list the values of N for a large 
variety of polyhedra in dependence on the maximum 
and subgroup symmetries of each polyhedron and, 
wherever practical, for all distinct partitions of V, i.e. 
for up to V kinds of substituents. The results have 
been obtained, or verified, by machine computation. 

The determination of N without construction is a 
combinatorial problem taking due account of reduc- 
tion, by symmetry, of the number of distinct per- 
mutations. A method of solution which concerns itself 
explicitly with chemical isomerism was described as 
early as 1929 by Lunn & Senior; it was subsequently 
used by Marchi et al. (1943). However, a more power- 
ful and elegant enumeration method is the cycle-index 
method due to Redfield (1927) and to P61ya (1936, 
1937). This is the method used to obtain the present 
results. P61ya's original presentations were not con- 
cerned directly with polyhedra and their symmetries. 
The first to apply the method to substitution on 
crystallographic polyhedra of full and reduced p.g. 
symmetries seems to have been Niggli (1941, 1945). It 
was employed, independently, for enumeration of 
three-dimensional chemical isomers by Hill (1943) and 
again, in more detail, by Kennedy, McQuarrie & 
Brubaker (1964) [cf. also the clear summary by Salt- 
house & Ware (1972)]. A concise general account of 
P61ya's enumeration theorem will be found in Harary 
& Palmer (1973). 

For our purposes the cycle index1" Z will be a poly- 
nomial that specifies the permutation group of V 
positions in E 3, some or all of which may be equivalent 

* In this paper a substituent will always be considered as 
having spherical symmetry and thus not giving rise to addi- 
tional configurations by virtue of its own structure. 

I" Redfield (1927) called this polynomial a 'group-reduction 
function'. 

by symmetry. For a set of V positions (points) forming 
a configuration of p.g. symmetry G, Z is given by 

Z=[1/p(G)] ch ~qd2d3 J, J2 J3 ~...aoaloa2~a3 3v hbS blS b2S b3 -]- 
h -k,~k2-k3+ ) (1) 

c ~ C l  ~ c 2  '~ c 3  " " " 

izal + i2a2 + iaaa =jib1 +j2b2 +jab° = . . .  = V, (2) 

h,. + ha + hc + . . . .  p (G) ,  (3) 

where s][ represents il permutation cycles of length al, 
and similarly for s~,s~] etc. The first term of each of 
the s-products in equation (1) refers to a symmetry 
operation contained in one of the classes of G, and 
its length is the order of that operation. That is, the 
operation represented by So~ permutes points in each 
of the i~ subsets of a~ points. If  ilal = V, ~o2"~2~,3"~a = 1. If 
ila~ < V, some or all of the remaining V-i~a~ points 
may lie on the symmetry element 6a~ represented by 
s,,~, and the s-product contains more than one s-term. 
If all the V-i~al points lie o n  ,.~'°l,a2= 1 or 2, i~a~ + 
i2a2= V, and /3 =0.  Otherwise the V-i~a~ points fall 
in iz subsets of a2 points, the points of e~ich subset 
being permuted by SaoC 6ao~, plus ia subsets of a° 
points permuted by SPoa c 6~'ol; a2 = 1 or 2, i2 >- 0, a3 > a2. 
The coefficients h,, hb etc. are the numbers of symmetry 
operations contained in the particular classes of G. 
Thus if SP~ is a threefold rotation axis, h, = 2. 

12-1(Smhd) : 12- 9(6) 
12-1(26d) =12-9(18) 12-1(Tmhd) =12-9(3) 12-1(4) = C(12; n) 

C=sHtz CmH=z CmHi2 CmH=z 

C20HI2 CieHlz CzoHa2 

C22HI2 

12-I (27md) = 12- 5(26(]) Czo HIz 

C2,~Hiz CzzHtz 

C2zH,2 

Fig. 1. Z-equivalent molecules of aromatic hydrocarbons with 
rigid condensed-ring systems containing twelve potentially 
replaceable hydrogen atoms (cf. Example 4 in text). 
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The construction of a cycle index is shown in ex- 
amples 1 to 3. Note that, following standard practice, 
the order of the s-terms in these examples, in Table 1 
and elsewhere in the text, is reversed from that in the 
preceding paragraph; the s-terms in a product are 
arranged in the order of their increasing length. 

Example 1. The symmetry elements, h coefficients 
and s-products of a hexagonal bipyramid 8-6 of sym- 
metry 6/mmm (D6h) are listed in Table 1. The two-term 
s-products arise from the circumstance that some of  
the vertices are situated on a symmetry element and 
are thus self-permuted relative to the corresponding 
symmetry operation, or at least are not subject to it 

11 While the threefold inver- to the full extent, e.g. s2s6. 
sion axis corresponds to an operation of order six, its 
operation on a vertex located in the horizontal mirror 
plane m would produce a set of only three equivalent 
vertices in m. Hence the vertex permutation is of order 
three and the corresponding s-product is 12 $2S 3 and not 

I 1 s2s6. Collecting the s-terms yields Z = ( ~ ) ( s S + 4 s 4 +  
2 3 7SxS2+3sas~ 6 1 2 2 + s : 2  + 2s :3  + 2s~s ] + 2s2s~ + 2s~s16). 

Table 1. The symmetry elements, h coefficients, and 
s-products o f  a hexagonal bipyramid of  symmetry 

6/mmm (D6h) (8-6) 

Number Type h s-product 
1 onefold axis 1 sa~ 
1 sixfold axis (two vertices on 6) 2 s2:6 ~ 

1 sixfold inversion axis (two vertices on (;) 2 s2s 312 
1 threefold axis C3 c C6 

(two vertices on 3) 2 s~sa2 2 
1 threefold inversion axis 

(two vertices on 3-) 2 S2S 6 1  1 
1 twofold axis C2 ~C6 (two vertices on 2) 1 s~s~ 
3 axial twofold axes (two vertices on 2) 3 s~s~ 
3 diagonal twofold axes 3 sl 
3 axial mirror planes (four vertices in m) 3 s:242 
3 diagonal mirror planes 

(two vertices in m) 3 s2s 3 I 2 
1 horizontal mirror plane 

(six vertices in m) 1 sxs26 
1 centre of symmetry 1 s~ 

Example 2. The bicapped tetrakaidecadeltahedron 
11-5 of symmetry 6m2 (D3h) may be visualized as a 
bicapped trigonal prism + 3. It is one of the two poly- 
hedra listed in Table 5 whose Z contain a triple 
product:  Z=(a~-2) (sill +3s:2+15 s:2+3 4 3s~s]+2s~s]+ 

1 1 1 2S2S3S6) ; the other polyhedron is 14-10. The triple 
product corresponds to the simultaneous permutation 
of two vertices on -6 by T=6,  three vertices in m ± 6  by 
3 c 6 ,  and six vertices forming a set about the 6 axis 
by 6. 

Example 3. The difference between the Platonic 
pentagonal dodecahedron 20-1 of symmetry 53m (lh) 
and the corresponding 'crystallographic' solid 20-1 (29) 
of the reduced symmetry m3 (Th) (pyritohedron) is 
clearly displayed in the cycle indices" 

20-1: (T~o) (s~ ° + 16s~ ° + 15sas s + 20s~s 6 
+ 24s~ + 20s~s~ + 24sZ0) 

20-1(29) (~x) 20 10 4 8 2 6 (sl +4s2 + + . • 3 s : 2 + 8 s : 3  8s~s~) 

To obtain N, a generating function f is substituted 
for each s in Z. This function takes account of the 
extent of equivalence of the V objects (substituents) 
placed one each in the V positions related through Z. 
It is a polynomial whose number of terms is equal to 
the number of substituent types and whose degree is 
equal to the length of the cycle s. For example, a 
p a r t i t i o n / / o f  V= 14 is specified by 3 + 3 + 3 + 2 + 2 + 1 
=332211, i.e. there are six types of substituents distri- 
buted as 3A, 3B, 3C, 2D, 2E, and one F. The generating 
function is then 

LI = ~ '  + ~ 1  + ~ 1  + ~ 1  + ~ ,  + x~, ,  

so that ~1 t q  z,l = :  al and similarly for a2 etc. The value of 
N(1-1), i.e. the number of distinct positional isomers 
for the combination of substituents (= 'chemical  com- 
position'), A3B3CzD2E2F, is then equal to the coefficient 
of the term 2 2  XaA:dB~cXDXEXv in the expanded Z[f(/-/)] 
polynomial and will be tabulated under the partition 
332211" 

Example 4. The formulae in Fig. 1 represent aromatic 
hydrocarbons with rigid condensed-ring systems whose 
molecules contain 12 potentially replaceable hydrogen 
atoms. Configurations of the H atoms in these mole- 
cules are Z-isomorpkic with the dodecagon 12-1 of 
various subgroup symmetries of 12/mmm (D12h). The 
Z-equivalences shown in Fig. 1 do not require the 
molecule to be planar• The results remain unchanged 
when the horizontal m is omitted from the symmetry 
assumed for the molecule. To the molecules shown in 
Fig. 1 one may add the as yet unknown polyhedrane 
C12H12 and prismane C12H12, which would be Z-iso- 
morphic with 12-2 and 12-3 respectively. This example 
shows how consideration of Z-isomorphism extends 
the usefulness of the tabulation of N. 

The cyde-index method for determining N is applic- 
able to any assembly of V points, regardless of 
whether or not the points form a convex hull•* How- 
ever, many of the sets of points considered here can 
conveniently be visualized as convex polyhedra. Al- 
though in some cases two or more non-isomorphic 
polyhedra can be constructed from a given set of  V 
points, it is clear that N is independent of the edge- 
connectivity of such polyhedra. For example, for 
V= 14 and m3m (Oh), the 14 points can be joined to 
form a tetrahexadron {h0l} (14-3), a trisoctahedron 
{hhl} h > l  (14--3'), or a rhombic dodecahedron {101} 
(14-3"). The three polyhedra are not edge-isomorphic, 
but they are Z-isomorphic. Such polyhedra are dis- 
tinguished in Table 5 by primes and double primes. 

* For example, the small stellated dodecahedron, a Kepler 
solid, is Z-isomorphic with the pentakisdodecahedron 32-3 if 
the inner as well as the outer vertices are counted, and the 
isomorphism extends over all the subgroups of 32-3. 
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For V discrete points to form a convex polyhedron, 
the maximum p.g. symmetry of their configuration is 
restricted by the requirement that 

V=0, 1,2 (mod n) for rotations through 2n/n, n > 2, 
V=0,2 (mod 2n) for rotary inversions, n_>2, and 
V= 0 (mod 2) for a centre of symmetry. 

The minimum condition for V= 2 (mod n) and 2 (mod 
2n) is that two of the points be located on the rotation 
axis in such a way that the remaining V - 2  points are 
confined between two parallel planes perpendicular to 
the rotation axis and each passing through one of the 
two points. Similarly, for V= 1 (mod n) the n-axis is 
polar and contains one of the V points; this point 
defines a plane perpendicular to the rotation axis and 
having the property that the remaining V - 1  points 
are on one side of this plane. Additional requirements 
come from Euler's theorem and other theorems of 
combinatorial topology [cf. for example Grfinbaum 
(1967)]. 

Selection of polyhedra 

The assortment of polyhedra treated in this work is 
based on an arbitrary selection. The numbers X of all 
non-isomorphic convex polyhedra are large even for 
small values of V (Grfinbaum, 1967), but the numbers 
~ '  of the Z-isomorphic classes among which the poly- 
hedra are distributed are much smaller (Table 2). Our 
Tables 6 to 46 thus cover many more polyhedra than 
those named explicitly in Table 5, though of course 
the coverage decreases with increasing V. The .A/" are 
known up to V= 8. An exhaustive listing of the corre- 
sponding polyhedra has been provided by Britton & 
Dunitz (1973). For V--8 the 257 polyhedrat are 
distributed among only 19 Z-isomorphic classes, all 
of which are included in this work, and further, 140 
of these polyhedra have p.g. symmetry Ct. The trends 
for ~ / , V  and c~/.4/" in Table 2 show that for some of 
the V> 8 the number of cycle indices evaluated here 
may include a / / the  ~e possible Z-isomorphic classes. 
The probability of this happening is greater for V 
that are prime or at least odd. The numbers of cycle 
indices evaluated are, for example, 

V 9 I0 11 12 13 14 
Number of Z 28 50 28 65 30 78. 

The selection in Table 5 includes polygons (a special 
class of two-dimensional polyhedra), the five Platonic 
polyhedra ~g', and all the cubic and icosahedral Ar- 
chimedean polyhedra d and their duals s¢*.~ Semi- 
regular polyhedra of the infinite d and d *  classes 
(Table 4) have been considered up to V=24, though 
not exhaustively. Polyhedra of reduced p.g. symmetry 
that have well-established names are listed under the 

]" Maximum possible p.g. symmetry is assigned to every 
polyhedron in Britton & Dunitz's list. 

1: For illustrations of the ~'g and ~' polyhedra see, for ex- 
ample, Cundy & Rollett (1961) or Wells (1956). For the d* 
polyhedra see Niggli (1941), Wells (1956) or Nowacki (1933). 

corresponding parent polyhedron of maximum p.g. 
symmetry. For example, the rhombohedron 8-2(20) 
and the tetragonal prism 8-2(15) are listed under the 
cube 8-2. Some general relationships are shown in 
Table 4. 

Table 2. The numbers of all non-isomorphic convex 
polyhedra of a given V (JV'), of  the corresponding 
Z-isomorphic classes (~¢), of the polyhedra of  p.g. 
symmetry C1 (egO, and of cycle indices evaluated 

v x .o~ 100.o~'/~4 ~1 100~/J~ Number of Z 
4 1 1 100 0 0 11 
5 2 2 100 0 0 14 
6 7 6 ,~ 86 0 0 30 
7 34 8 .,,23.5 7 ,-,21 18 
8 257 19 ,~7"4 140 ,~55 45 

Six of the eight convex deltahedra A bounded by 
congruent equilateral triangles (Freudenthal & van 
der Waerden, 1947) are members of the classes already 
mentioned: 3-1, 4-2, 5-3, 6-4, 7-3, and 12-9. The 
remaining three are 8-2(14), 9-5, and 10-9. 

The Kasper polyhedra Y.f~ are generalized delta- 
hedra. They are favoured as coordination polyhedra 
in crystal structures of metallic phases (Kasper, 1956). 
The three J,f~ polyhedra considered here are 14-7, 
15-5, and 16-6; Jg'~-12 is the icosahedron 12-9. 

Among polyhedra of chemical interest are those of 
the 3-connected isogonal polyhedra whose vertex angles 
fall within the ranges consistent with potentially admis- 
sible C-C-C and H - C - C  bond angles in the two classes 
of saturated hydrocarbons C,H,,  the polyhedranes 
and the prismanes (Schultz, 1965). Apart from tetra- 
hedrane and cubane, both of which have ~ {  geomemes 
all the other polyhedrane skeletons are ~ (12-2, 20-1, 
24-1, 24-2, 48-1, 60-1, 60-2, 120-1). Of the prismane 
skeletons seven are included here: 6-2, 10-2, 12-3, 
14-2, 16-2, 20.2, 24-3. 

Derivative polyhedra were generated from the parent 
polyhedra mostly by methods that preserve p.g. sym- 
metry. Regular truncation (complete or partial) of the 
vertices, augmentation by associating additional ver- 
tices with the faces (capping) or edges of the parent 
figure in a p.g. preserving manner, construction of 
duals ~@ and vertex-figure derivatives ¢/~ are such 
processes. In Table 5 the term singly-capped refers to 
augmentation by one vertex and bicapped to augmen- 
tation by two vertices on a principal axis of rotation. 
Other types of augmentation on faces are described 
by names like 'singly-capped trigonal prism + 1' etc. 

Schematic projections of some of the less common 
polyhedra of Table 5 are shown in Fig. 2. It is useful 
to note that the 4//" derivative of an n-sided bipyramid 
is an n-sided prism +n, that of an n-sided pyramid is 
a tapered antiprism (top basal face smaller than the 
bottom basal face), and that of an n-sided prism is a 
completely truncated n-sided prism (a class of its own, 
related to the prisms as the cuboctahedron is to the 
cube). 



O S V A L D  K N O P ,  W I L L I A M  W. B A R K E R  A N D  P E T E R  S. W H I T E  465 

Partitions 

Every  par t i t ion  H ( V )  of  V cor responds  to a combi-  
na t ion  o f  un iva len t  (monoden ta t e )  subst i tuents ,  i.e. 
to a 'chemical  compos i t ion ' .  The  n u m b e r  o f  par t i t ions  
grows rapid ly  wi th  V and  so do the values o f  N[H(V)] .  
I t  is then necessary to decide a t  which  po in t  t abu la t ion  

can no longer  be viewed as pract ical  a n d  potent ia l ly  
useful.  In the presen t  t abu la t ion  unres t r ic ted  par t i t ions  
are included for  V < 8 .  Par t i t ions  up to qu ina ry  are 
included for  V = 9 ;  up to q u a t e r n a r y  for  V =  10,11,12; 
and  up to t e rna ry  for  V f r o m  13 to 16. F o r  V >  17 
only b inary  par t i t ions  are listed. W h e n  V > 2 6  the 
numbers  N[1-1(V)] become very large even for  b inary  

No. 

1 
2 
3 
4 
5 
6 
7 

8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

Table  3. Sequence o f  point  groups 

Only those settings are listed that appear in Tables 5 to 46, see text for conventions. 

P.g. and setting No. P.g. and setting No. P.g. and setting 
1 (CO 39 5/m (Csn) 78 11 (C~,) 
T (Cl = $2) 40 l O/m (Cl0n) 79 11.2 (Dll) 
2(C2); 3v, 3a, 3d 41 10.2 (Dl0) 80 l lm (C~o) 
m (C~); 4mh, 4ma, 4rod 42 10m (C,0v) 81 22 (Cain) 
2/m (C2n); 5v, 5a, 5d 43 1-"0m2 (Dsn); 43a, 43d 82 ~2m2 (Dxln) 
222 (D2); 6va, 6vd 44 lO/mmrn (Dlon) 83 12 (Clz) 
2ram ((?2o); 7mha, 7mhd, 45 532 (I) 84 ]'2 ($12) 

7maa, 7todd, 7mad 46 53m (In) 85 12/m (C12n) 
mmm (D2n); 8mha, 8mhd 47 7 ((?7) 86 12.2.2 (Dlz); 86a, 86d 
4 (C4) 48 7 (Cvt =S~4) 87 12m (C12~) 

($4) 49 72 (D7) 88 12m2 (D6n); 88a, 88d 
4/m (C4n) 50 7m (C7~) 89 12/mmm (Dl2a) 
422 (D4); 12a, 12d 51 7m (DTa); 51a, 51d 90 13 (C1a) 
4ram (C4o); 13ma, 13md 52 14 (C14) 91 13.2 (Dla) 
4m2 (D2a); 14a, 14d 53 1--4 (C7n) 92 13m (Caao) 
4/mmm (Dan); 15ma, 15rod 54 14/m (C~4n) 93 2-6 (Ct3h) 
3 (Ca) 55 14.2 (Dig) 94 ~-6m2 (Dlan) 

(C3~=$6) 56 14m (C~4v) 95 15 (C15) 
32 (D3)" 18a, 18d 57 1--4m2 (DTn); 57a, 57d 96 15.2 (Dxs) 
3rn (C3o); 19ma, 19md 58 14/mmm (Dl4n) 97 15m (CIso) 
3m (O3a); 20a, 20d 59 8 (Ca) 98 ~ (C~sn) 
6 (C6) 60 g (Sa) 99 ~3-0m2 (Dish) 
-~ (Can) 61 8/m (Can) 100 16 (C16) 
6/m (C6n) 62 822 (Ds) 101 -i~,($16) 
622 (D6); 24a, 24d 63 8mm (Cso); 63ma, 63md 102 16/m (C~6h) 
6mm (C6o); 25ma, 25md 64 gm2 (D4a); 64a, 64d 103 16.2 (Da6) 
~m2 (Ozn)" 26a, 26d 65 8/mmm (Dan); 65ma, 65md 104 16ram (C16o) 
6/mmm (D6h); 27ma, 27rod 66 9 (C9) 105 1--6m2 (Dan); 105a, 105d 
23 (T) 67 ~ (C91=S18) 106 16/mmm (Dx6h) 
m3 (Th) 68 92 (Dg) 107 17 (C~7) 
432 (O) 69 9m (C9~) 108 17.2 (D17) 
~3m (Ta) 70 ~Im2 (Dga); 70a, 70d 109 17m (CaTo) 
m3m (On) 71 18 (C~s) 110 3---4 (CxTn) 
5 (Ca) 72 -i-g (Cgn) 111 3-'4m2 (Dx7n) 
-5 (C~=S~o') 73 18/m (Clan) 112 19 (C19) 
52 (Ds); 35a, 35d 74 18.2 (Dts) 113 19.2 (Dtg) 
5m (Cso); 36ma, 36md 75 18mm (C~so) 114 19m (C~9o) 
5rn (D~a); 37a, 37d 76 I-gin2 (D9n) 115 3--g (C~9n) 
10 (Ct0) 77 18/mmm (D~sn) 116 ~gm2 (D~gh) 

Table  4. General relationships o f  some classes o f  convex polyhedra 
Polyhedron V F E! V 

P.g. F g - E/V  
D.n n-gonst" n 2 n 1 - 
C.o n-sided pyramids n + 1 n + 1 2n < 2 < 2 
D.n n-sided prisms (.~') 2n n + 2 3n k < 3 
D.a Antiprisms projecting to 2n 2n+2 4n 2 <2 

regular 2n-gons ( ~ )  
D.n Bicapped n-sided prisms 2n+2 3n 5n <~ 
D.a Bicapped antiprisms projecting 2n+2 4n 6n < 3 

to regular 2n-gons as contours 
Deltahedra (triangular faces 
only) V 2 (V-2)  3 (V-2)  3--(6/V):I: - 

Dual polyhedron 

n-sided pyramids 
n-sided bipyramids (d* )  
Streptohedra projecting to regular 
2n-gons as contours (d* )  
Basally truncated n-sided bipyramids 
Basally truncated streptohedra 
projecting to regular 2n-gons as contours 

t Z(C.v) = Z(D.) = Z(D.h), Z(C.) = Z(C.h), Z(4ma) = Z(3a) = Z(Zmha), Z(4mh) = Z(1). 
This is the upper limit of the E] V ratio for convex polyhedra 

A C 31A - 5 
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No. 
3-1 
4-1  
4 -2  
4 -2  (19) 
4-2  (14) 
5-1 
5-2 
5-3 
6-1 
6-2 
6-3 
6-4  
6-4 (20) 
6-4 (15) 
6-4 (14) 
7-1 
7-2 
7-2 (19) 
7-2 (19) 
7-2 (7) 
7-3 
8-1 
8-1 (64) 
8-1 (7) 
8-2  
8-2 (31) 
8-2 (20) 
8-2 (15) 
8-2 (14) 
8-2 (8) 
8-3 
8-4 
8-5 
8-5 (4) 
8-6 
8-6 (20) 
9-1 
9-2 
9-2 (13) 
9-3 
9-4 
9-5 
9-5 (26) 
9-5 (26) 
9-5 (26) 
9-5 (19) 
9-5 (4) 
9--6 

10-1 
10-2 
10-3 
10--4 
10-5 
10-6 
10-7 
10-7 (64) 
10-8 
10-9 
10-10 
10-11 
11-1 
11-2 
11-2 (36) 
11-3 
11-4 
11-5 
11-5 (19) 
11-6 
12-1 
12-2 

Table 5. List of polyhedra 

P.g. F E Polyhedron 
26 2 3 Triangle 
15 2 4 Square 
31 4 6 Tetrahedron, (~t,  A), self-dual, ¢/'= 6-4 
19 4 6 Trigonal pyramid, "//'=6--4 (19) 
14 4 6 Bisphenoid, ¢/ '=6-4 (14) 
43 2 5 Pentagon 
13 5 8 Square pyramid, ¢/" = 8-1 (15ma) 
26 6 9 Trigonal bipyramid (A), ~ = 6-2, ¢/" = 9-5 (26) 
27 2 6 Hexagon 
26 5 9 Trigonal prism, ~ = 5 - 3  
36 6 10 Pentagonal pyramid 
32 8 12 Octahedron (Pt, A), ~ = 8-2, ¢/" = 12-5 
20 8 12 Trigonal antiprism, ~ = 8-2 (20) 
15 8 12 Tetragonal bipyramid, ~ = 8-2 (15) 
14 8 12 Tetragonal scalenohedron [= 6-4 (14d)] 
57 2 7 Heptagon 
25 7 12 Hexagonal pyramid 
19 7 12 Singly-capped trigonal prism [ = 7-2 (19ma)] 
19 10 15 Singly-capped trigonal antiprism [ = 7-2 (19ma)] 

7 8 13 Trigonal prism + 1 [ = 7-2 (Tmad)] 
43 10 15 Pentagonal bipyramid (A) 
65 2 8 Octagon 
64 10 16 Square antiprism [= 8-1 (64a)] 

7 11 17 Trigonal prism+2 [=8-1 (7maa)] 
32 6 12 Cube (#g), ~ = 6 - 4 ,  "//'=12-5 
31 12 18 Tristetrahedron (~'*), .~= 12-2 
20 6 12 Rhombohedron (trigonal streptohedron, d*) ,  ~ = 6--4 (20) 
15 6 12 Tetragonal prism, ~ = 6 - 4  (15) 
14 12 18 Dodecadeltahedron (A) [=8-2 (14d)] 
8 8 14 See Fig. 2 [ = 8-2 (8mha)] 

50 8 14 Heptagonal pyramid 
14 8 14 See Fig. 2 
26 9 15 Bicapped trigonal prism 

4 10 16 Singly-capped trigonal prism+ 1 [=8-2  (4ma)] 
27 12 18 Hexagonal bipyramid 
20 12 18 Hexagonal (ditrigonal) scalenohedron [ = 8-6 (20d)= 8-2 (20)] 
76 2 9 Nonagon 
63 9 16 Octagonal pyramid 
13 13 20 Singly-capped square antiprism [= 9-2 (13ma)] 
13 9 16 Singly-capped cube 
7 12 19 Bicapped trigonal prism+ 1 

26 14 21 Tetrakaidecadeltahedron (A) 
26 8 15 ~ (8-5)= basally truncated 5-3 
26 11 18 ~e'(6-2) = ~e'(5-3) 
26 14 21 Trigonal prism + 3 (faces not all equilateral) 
19 14 21 Octahedron + 3 (symmetric) 
4 13 20 Singly-capped trigonal prism + 2 [ = 9-5 (4ma)= 9-2 (4ma)] 

57 14 21 Heptagonal bipyramid 
44 2 10 Decagon 
43 7 15 Pentagonal prism 
69 10 18 Nonagonal pyramid 
37 12 20 Pentagonal antiprism 
15 12 20 Bicapped cube 

7 15 23 Bicapped trigonal prism + 2 
65 16 24 Octagonal bipyramid 
64 8 16 Streptohedron ( d * )  [= 10-7 (64d)], N =  8-1 (64) 
19 16 24 Singly-capped trlgonal prism + 3 
64 16 24 Hexakaidecadeltahedron (A) 
64 16 24 Bicapped square antiprism [= 10-9] 
31 16 24 Tetrahedron with broken edges (=  octahedron + 4) 
82 2 11 Hendecagon 
42 11 20 Decagonal pyramid 
36 16 25 Icosahedron-1 (=  singly-capped pentagonal antiprism) [= 11-2 (36ma)] 

7 15 24 Cube + 3 (equatorial) 
76 18 27 Nonagonal bipyramid 
26 18 27 Bicapped tetrakaidecadeltahedron 
19 15 24 Cube + 3 (vicinal) 

7 12 21 See Fig. 2 
89 2 12 Dodecagon 
31 8 18 Truncated tetrahedron (.~¢), N = 8-2 (31) 

Table 
19 
46 

8 
8 
8 

19 
21 
21 
46 
46 
20 

9 
9 
9 
9 

19 
22 

22, 46 
22, 46 
22, 46 

22 
23 

23, 46 
23, 46 

12 
12, 46 
12, 46 
12, 46 
12, 46 
12, 46 

20 
46 
46 
12 
23 
12 
24 
24 

24, 46 
25 
25 
25 
25 
25 
25 

25, 46 
24 
25 
27 
46 
28 
46 
28 
46 
26 

26, 46 
46 
46 
46 
27 
19 
30 

30, 46 
46 
29 
30 

30, 46 
46 
32 
46 
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No. 
12-3 
12-4 
12-5 
12-6 
12-7 
12-8 
12-9 
12-9 (37) 
12-10 
12-11 
12-12 
12-13 
12-14 
12-15 
12-16 
13-1 
13-2 
13-3 
13-4 
13-5 
14-1 
14-2 
14-3 
14-3 (31) 
14-3' 
14-3" 
14-3" (31) 
14-4 
14-5 
14-6 
14-7 
14-8 
14-9 
14-10 
15-1 
15-2 
15-3 
15-4 
15-5 
16-1 
16-2 
16-2 (64) 
16-3 
16-4 
16-5 
16-6 
17-1 
18-1 
18-2 
18-3 
19-1 
20-1 
20-1 (29) 
20-1 (28) 
20-1' (29) 
20-2 
20-3 
24-1 
24-1 (30) 
24-2 
24-2' 
24-3 
24--4 
26-1 
26-1 (29) 
26-1' 
30-1 
32-1 
32-2 
32-3 

P.g. 
27 
8O 
32 
88 
15 

7 
46 
37 
44 
20 
15 
14 

8 
43 
14 
94 
87 
25 
13 
82 
58 
57 
32 
31 
32 
32 
31 
92 
27 
89 
88 
20 
51 
26 
99 
43 
26 
94 
26 

106 
65 
64 
31 
64 

105 
19 

111 
77 
26 
32 

116 
46 
29 
28 
29 
44 
32 
32 
30 
32 
32 
89 
64 
32 
29 
32 
46 
46 
46 
46 

Table  5 (cont.)  

F E Polyhedron 
8 18 Hexagonal prism 

12 22 Hendecagonal pyramid 
14 24 Cuboctahedron (~¢), -@ = 14-3" 
14 24 Hexagonal antiprism 
18 28 Cube + 4 (equatorial) 
18 28 Cube + 4 (vicinal) 
20 30 Icosahedron (~t', A), -@=20-1, "//'=30-1 
20 30 Bicapped pentagonal antiprism 
20 30 Decagonal bipyramid 

8 18 Basally truncated rhombohedron [= 12-9] 
10 20 Basally truncated tetragonal bipyramid 
12 22 See Fig. 2 
12 22 See Fig. 2 
15 25 Bicapped pentagonal prism 
16 26 See Fig. 2 
2 13 Tridecagon 

13 24 Dodecagonal pyramid 
13 24 Singly-capped hexagonal prism 
21 32 Cube+5 
22 33 Hendecagonal bipyramid 

2 14 Tetradecagon 
9 21 Heptagonal prism 

24 36 Tetrahexahedron (d*) ,  -@=24-2 
24 36 Hextetrahedron 
24 36 Trisoctahedron (d* )  [ = 14-3], -~ = 24-1 
12 24 Rhombic dodecahedron (d* )  [= 14-3], -@= 12-5 
12 24 Deltohedron [ = 14-3 (31)] 
14 26 Tridecagonal pyramid 
18 30 Bicapped hexagonal prism 
24 36 Dodecagonal bipyramid 
24 36 Bicapped hexagonal antiprism (asia-14) 
24 36 Bicapped icosahedron 
18 30 Heptagonal antiprism 
9 21 .@(9-5) 
2 15 Pentadecagon 

12 25 Basally truncated pentagonal bipyramid 
17 30 Hexagonal prism + 3 (alternating) 
26 39 Tridecagonal bipyramid 
26 39 Kasper-15 (o,'¢{'~) 

2 16 Hexadecagon 
10 24 Octagonal prism 
10 24 Basally truncated 10-7 (64d)= -@(10-9) [= 16-2 (64d)] 
16 30 Tristetrahedron with truncated trivalent vertices 
18 32 ~r[8-1 (64)] [= 16-1 (64d)] 
18 32 Octagonal antiprism [= 16-1 (105d)] 
28 42 Kasper-16 (Jr%) 

2 17 Heptadecagon 
2 18 Octadecagon 

11 27 See Fig. 2 
32 48 Cuboctahedron + 6 (above square faces) 
2 19 Nonadecagon 

12 30 Pentagonal dodecahedron (.~e), -@= 12-9, q/'=30-1 
12 30 Pyritohedron 
12 30 Tetartoid 
24 42 See Fig. 2 
12 30 Decagonal prism 
30 48 Cuboctahedron + 8 (above triangular faces) 
14 36 Truncated octahedron (~¢), -@= 14-3 
38 60 Snub cube (~) ,  -@=38-1 
14 36 Truncated cube (~) ,  -@=14-3" 
26 48 Rhombicuboctahedront (~¢), -@=26-1 
14 36 Dodecagonal prism 
26 48 Antirhombicuboctahedron 
24 48 Trapezohedron (trapezoidal icositetrahedron, d*) ,  -@=24-2' 
24 48 Diploid 
48 72 Hexoctahedron (d*) ,  -@=48-1 
32 60 Icosidodecahedron (~'), -@=32-1 
30 60 Rhombic triacontahedron (d*) ,  -@=30-1 
60 90 Trisicosahedron (d*) ,  -@ = 60-1 
60 90 Pentakisdodecahedron (d*) ,  -@=60-2 

Table 
32 
20 
13 
46 
46 
46 

6 
6 

31 
6 

32 
46 
46 
46 
46 
19 
33 
33 
33 
33 
36 
46 

10, 11 
10, 11, 46 

10, 11 
10, 11 

10, 11, 46 
20 
37 

34, 35 
46 
46 
46 
36 
38 
40 
40 
39 
40 
41 
42 

42, 46 
42 
41 
41 
46 
19 
43 
46 
15 
19 
6 
6 
6 
6 

44 
16 
12 
12 
14 
14 
45 
45 
17 
17 
17 
7 
7 
7 
7 

A C 31A - 5* 
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N o .  

38-1 
48-1 
60-1 
60-1 (45) 
60-2 
60-3 
62-1 
62-2  
92-1 
120-1 

T a b l e  5 (cont.) 
P.g. F E Polyhedron 
30 24 60 Gyroid (pentagonal icositetrahedron, ~¢*), N = 24-6 
32 26 72 Truncated cuboctahedron ( ~ ,  ~ = 2 6 - 2  
46 32 90 Truncated dodecahedron (,~J), N = 3 2 - 2  
45 92 150 Snub dodecahedron (,~g), N = 92-1 
46 32 90 Truncated icosahedron (s~r), N = 32-3 
46 62 120 Rhombicosidodecahedron (~¢), # = 62-1 
46 60 120 Trapezoidal hexecontahedron (,~'*), N = 60-3 
46 120 180 Hecatonicosahedron (hexicosahedron, ~¢*) N = 120-1 
45 60 150 Pentagonal (pentagonoidal) hexecontahedron (,z/*), N = 60-1 (45) 
46 62 180 Truncated icosidodecahedron (,~'), N = 62-2 

1" Rotate projection in Fig. 2 by 45 ° to bring 24-2'  in Z-coincidence with 24-2.  

Table 
18 
18 
7 
7 
7 
7 
7 
7 
7 
7 

T a b l e  7. Ih and subgroups ( V >  20) 

Partit ion 46 45 29 28 Partition 46 45 29 28 

30-1 Icosidodecahedron 56141 4 190 8 236 20 459 40 745 

29111 i i 2 3 55151 45 718 91 030 227 766 455 126 

28121 8 11 23 40 54161 418 470 835 476 2 087 434 4 173 130 

27131 46 78 183 352 53171 3 220 218 6 436 782 16 093 782 32 183 910 

26141 262 483 .i 179 2 310 52181 21 330 558 42 650 532 106 618 833 213 225 255 

25151 1 257 2 423 6 006 11 921 62-] (- 62-2) Hexecontahedron 

24161 5 113 i0 025 24 929 49 625 61111 3 3 5 ? 

234 1 17 238 34 112 85 098 169 832 60121 32 40 96 166 

22181 49 270 97 890 244 413 488 085 59131 391 652 i 655 3 180 

21191 119 997 238 993 596 922 1 192 843 58141 5 023 9 427 23 640 46 630 
201101 251 512 501 507 1 253 109 2 504 502 57151 55 276 108 079 270 977 539 481 

191111 456 729 911 456 2 277 639 4 553 276 56161 517 350 1 025 772 2 566 679 5 124 127 

181121 722 750 i 442 875 3 606 061 7 209 160 55171 4 113 656 8 198 764 20 506 922 40 985 296 

32-1 (= 32-2, 32-3) Rhombic triacontahedron 92-1 Pentagonoidal hexeoontahedron 
31111 2 2 3 4 91111 3 - 9 

30121 12 13 29 46 90121 82 - 361 

29131 62 86 229 420 89131 2 103 - I0 485 

28141 378 636 1 584 3 040 88141 46 848 - 233 145 

27151 1 838 3 362 8 551 16 788 87151 819 636 - 4 098 114 

26161 8 004 15 263 38 235 75 686 86161 - ii 888 427 - 59 426 448 

25171 28 832 56 130 141 041 280 548 ]20-] Truncated icosidedecahedron 

24181 89 355 175 775 440 034 877 010 119111 1 2 5 10 

23191 236 269 467 520 I 171 249 2 337 480 118121 75 134 315 610 

221101 546 217 1 076 382 2 692 807 5 377 272 117131 2 347 4 694 ii 715 23 430 

60-1 (= 60-2, 50-3) Truncated dodecahedron i16~41 68 912 137 352 342 790 684 990 

59111 i i 3 5 115151 1 588 155 3 176 310 7 940 751 15 881 502 

58121 23 37 83 155 114161 30 448 389 60 887 906 152 209 015 304 406 610 

57131 303 577 1 447 2 865 

T a b l e  15. Cuboctahedron + 6 1 8 - 3  

Partition 32 31 30 29 28 20 19 25 14a 14d 23 22 21 20 9 8mhu 8mhd ?muu ?m~ ?mad 6va 6u 5d 4ma 4md 

17111 

16121 

15131 

14141 

i3151 

12161 

11171 

10181 

92 

2 2 2 2 2 4 7 h 4 5 6 4 h 5 6 4 6 7 9 8 6 6 7 12 13 

9 Ii i0 12 15 24 42 21 26 31 32 25 26 hi 41 31 36 47 57 52 45 46 51 83 93 

31 46 42 50 76 97 186 78 116 132 136 112 116 208 208 128 144 224 256 240 216 216 232 424 456 

94 149 142 161 264 322 620 255 413 452 459 406 420 776 776 444 483 806 884 845 792 799 838 1562 1640 

230 392 380 416 728 832 1636 646 1120 1196 1212 1108 1132 2156 2160 1172 1248 2212 2364 2288 2184 2184 2260 4340 4492 

471 832 811 877 1578 1745 3433 1339 2395 2520 2541 2374 2427 4664 4664 2488 2613 4746 4996 4871 4704 4725 4850 9366 9616 

770 1396 1368 1456 2680 2912 5768 22~6 4076 4252 4280 4048 4108 7984 7984 4192 4368 8096 8448 8272 8040 8040 8216 16024 16376 

lO43 19oY 1872 1985 3678 397o 7856 3028 5585 5800 5835 5550 5645 10974 10974 574o 5955 11104 11534 11319 11034 11069 11284 22012 22442 

1154 2120 2088 2200 41o0 4390 8710 3344 6200 6430 6468 6168 6248 12190 12196 6350 6580 12330 12790 12560 12260 12260 12490 24450 24910 

.Z8 = 18- I (28a) .  - 17 = 18- I (23) .  - 16 = 18 - I (22 ) .  - 8vd = 6va. - 3a, Sd = 18-1(?rnha). - 2 = 18- I (?mM) .  
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partitions. Tabulation is then restricted to the first 
few binary partitions and to the cubic or icosahedral 
point groups (Tables 7 and 18). 

When the p.g. symmetry of a polyhedron is C~, 
N [ H ( V ) ]  for a partition H ( V ) = c g b a c ~ ' . . . ,  oca+13b+ 
7c + . . .  = V (a > b > e . . . ) ,  is equal to the multinomial 
coefficient C(  V; 17) = C( V; a ~ , b a, cV . . . ) = V! /aVb !tS cF . . . 
and is not listed. 

Evaluation of N by computer 

Initially only binary partitions and a small number 
of polyhedra were considered, and the N were obtained 
essentially by hand calculation using Miller's (1954) 
extensive tables of binomial coefficients. However, as 
the enumeration assumed a more systematic character, 
the labour involved in hand computation became 
prohibitive and the evaluation of  N was adapted to 
machine computation. Special programming methods 
had to be employed (White, 1972), for the evaluation 
is essentially an algebraic rather than numerical 
task involving expansion of  products and powers of  
polynomials with integral coefficients and exponents. 
The computations were performed on an IBM 360/50 
installation at the Dalhousie Computer Centre. 

• @ 
® ® ® ® 

0 • 0 • 
@ @ o 

• ® ® • • 

6 -4 (14 )  7 -2 (7 )  8 - l ( 7 )  8 -2  8 -2 (31 ,14 )  
0 GI, @ @ 

• • • • ® • ® 
• ® 

0 0 @ • O 0® ®@ 

8-6(20) 9•-4 

0 0 ® • 

0 0 @ @ 

8-5(4) 

® ® 
® 

0 

11-5(19) 
0 

• 00• • 

00•0 0 

12e-, 

10-7(64);10-9,10 IOe-8 

® • OI•I 0 •@® 

• 000 • 000 

11-5(7) 11-6 
@ • 

® • 0 
Q • ® 0 • ® ® ®  

• 0 • 

I~I2 12e-13 12-14 
0 

@ • @ IO•O• @@ @@ @® ®@ • • •  ® @ • @ • • @  
• 0 OIOIO @ ® 

• @®@ @ 

14- 5', 3" 14 -8  14-10 15-2 
~ @ @ 000 

8000008 • • 000@ 0 10 %® 
@ 000 @ • • • 

@ @ OI 0 v~ 

16-5 16-4 16-6 18-2 
®~• ®®• • ® • • 

@ ®  • ®  • 0 
~® • ~ • •@ •@@ @@® ® •  • •  g % •  

• •0 O • 
®®® • • • • 

20 -3  24 -  2 24 -2 '  24 -4  

9 - 5  9-5(26) 
• 0 

0 0 
0 • 0 • 

• 0 0 l @ @ • 

I g l l  11-2(361 

® • @ @ 

000 ® @ @ • 0 @ ® 0 0 @ ® 
O@ 

@ 
8-2(8) 8~-4 

0 
• • • ® ® 

0 • @0 @ @ 
• ® 

9-509) 9-5(4) 
® @ 

@ 

® ® @®® 
@ ® @ @ @ 

lle-3 11-5 
® ® 

0 0 @ @ ® ® ® ® ® 
0 0•0 ® ® • @ @ @ @ 

,22 ,275 ,2~v ,2T8 
® ® • 

• ~ o 
D O O ®  ~ • ® 0 • •0 

• 0 @ @ @ @ 
® 

,2~-,6 ,3-4 ,4-~(3,1 
® ®O O 0 • 0 

0•0 
@ ® ® ® 00~ • ® ® @ ® ®@ 

® O  ® ® 0 • 0 

15-5 15--5 16- 2 (64) 

@®®®@ 0 • 0 • ® ®® ® 

18-3 20-1(28) 20-1'(29) 

® ® •o,~%• 

26-I 26-l(29) 32-1 

Fig. 2. Schematic parallel projections of the vertices of some 
of the less common polyhedra of Table 5. Full circles, 
vertices above the equatorial plane; half-filled circles, ver- 
tices in the equatorial plane; open circles, vertices below the 
equatorial plane. Double circles indicate coincidence, in 
projection, of a vertex above the equatorial plane and one 
below the equatorial plane. 

Presentation of the results 

The values of N for the polyhedra of Table 5 are listed 
in Tables 6 to 45.* The following conventions are 
observed. 

All the point groups required are listed in Table 3. 
They are identified by running numbers 1 to 116. The 
crystallographic point groups follow the order in 
which they appear in the space-group sequence in 
Internat ional  Tables  f o r  X - r a y  Crys ta l lography  (1952). 

Progressive reduction of the p.g. symmetry of  a 
polyhedron sometimes results in two or more distinct 
orientations of  the vertices relative to the symmetry 
elements of the reduced p.g., each orientation cor- 
responding to a different Z and thus to a different set 
of values of  N. To specify the position of  a twofold 
axis, the letters v (vertical), a (axial), or d (diagonal) 
are associated with the running p.g. number. A vert ical  
digyre coincides with the principal rotation axis of 
order 2n, or an inversion axis of order 4n, in the parent 
polyhedron of maximum p.g. symmetry. An axia l  
digyre passes through a vertex, or a pair of  opposing 
vertices, situated in the equatorial plane of the poly- 

* Most of these voluminous tables have been deposited with 
the British Library Lending Division as Supplementary Publi- 
cation No. SUP 30962 (41 pp., 1 microfiche). Tables 7, 15 and 
31 are reproduced in full, as examples of the type of informa- 
tion contained. Copies of the deposited tables may be obtained 
through The Executive Secretary, International Union of 
Crystallography, 13 White Friars, Chester CH1 1NZ, England. 

Table 31. D e c a g o n a l  b i p y r a m i d  12-10 

Partition 44 4$a 43d 42 4I 39 38 37a 36md 8 7 m h u  ?ml~ 4mh 

11111 2 3 2 3 2 3 3 2 3 4 7 6 ii 
10121 8 56 7 10 9 7 12 8 7 10 19 32 31 

10112 8 15 12 11 8 23 15 8 15 30 59. 56 111 

9131 14 25 20 19 14 35 23 16 27 50 95 90 175 

8141 29 49 45 37 33 75 51 33 57 i07 199 195 375 

912111 32 61 54 43 36 103 67 38 71 136 267 260 515 

7151 40 74 64 56 46 118 82 50 90 158 306 296 582 

62 48 84 78 64 58 136 96 58 lob 186 352 346 672 

9113 54 108 102 72 66 204 132 66 132 258 516 510 1020 

813111 82 161 148 115 102 291 199 104 203 374 743 730 1455 

8122 129 240 231 174 165 432 300 165 312 567 1104 1095 2160 

714111 154 302 284 222 204 558 398 208 406 714 1418 1400 2790 

615111 208 410 388 306 284 766 558 288 566 974 1938 1916 3822 

812112 224 445 430 315 300 855 595 302 599 lO80 2155 2140 4275 

713121 298 584 556 436 408 1092 796 416 812 1394 2768 2740 5460 

614121 506 976 954 748 726 1848 1392 726 1416 2366 4672 4650 9240 

713112 552 1104 1080 816 792 2160 1584 792 1584 2712 5424 5400 10800 

5221 586 1154 1112 892 850 2194 1670 862 1694 2784 5538 5496 10962 

6132 642 1272 1228 980 936 2436 1852 944 1868 3082 6144 6100 12180 

712211 830 1648 1612 1236 1200 3204 2380 1208 2396 4038 8056 8020 16020 

614112 934 1862 1832 1422 1392 3654 2774 1396 2782 4590 9170 9140 18270 

514131 936 1854 1800 1458 1404 3570 2778 1416 2802 4512 8994 8940 17850 

5212 1102 2204 2168 1700 1664 4336 33~8 1664 3328 5436 10872 10836 21672 

43 1170 2286 2250 1818 1782 4410 3474 1782 3510 5598 11106 11070 22050 

61312111 1822 3632 3580 2836 2784 7140 55h8 2792 5564 8966 17912 17860 35700 

51412111 2664 5310 5244 4242 4176 10458 8322 4188 8346 13128 26226 26160 52290 

6123 2736 5400 5352 4272 4224 10584 8328 4224 8376 1334b 26568 26520 52920 

513211 3480 6960 6888 5616 5544 13776 11088 5544 11088 17256 34512 34440 68880 

423111 4308 8598 8520 7026 6948 17010 13866 6960 13890 21324 42618 42540 85050 

513122 5190 10344 10236 8460 8352 20412 16644 8376 16692 25614 51168 51060 102060 

4222 6438 12768 12690 10572 10494 25200 20808 10494 20880 31674 63168 63090 126000 

413221 8394 16752 16620 14028 13896 33180 27732 13920 27780 41586 83112 82980 165900 

3 u 10992 21984 21840 18624 18480 43680 36960 18480 36960 54672 109344 109200 218400 

40 = 12 -9 (40 ) .  - 37d = 12 -9 (37 ) .  - 36ma = 12 -9 (36 ) .  - 35a = 36md. - 35d = 12 -9 (35 ) .  - 34 = 

12 -9 (34 ) .  - 33 = 12 -9 (33 ) .  - 7mad = 12 -5 (7~ ) .  - 6 ,  5a = 12 -5 (?m~) .  - 5d = 12 -9 (5 ) .  - 4ma 

= 12 -9 (4 ) .  - 4rr, d ,  3d,  2 = 12 -9 (3 ) .  - 3v, 3a = 12 -5 (4ma) .  
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hedron (_1_ principal axis); if the polyhedron has no 
vertices in the equatorial plane, the axial digyre is an 
intersection of the equatorial plane and an axial mirror 
plane (see below). A diagonal digyre corresponds to 
the remaining, third type of position. Similarly, the 
position of a mirror plane is specified by the letters h 
(horizontal), a (axial), d (diagonal), which follow m 
after the running p.g. number. A horizontal mirror 
plane is perpendicular to the principal axis of the 
parent polyhedron of maximum p.g. symmetry. An 
axial mirror plane contains a vertex, or a pair of 
opposing vertices, in the equatorial plane; alternatively 
it contains a vertical edge, or a pair of opposing 
vertical edges, of the parent polyhedron. In polyhedra 
belonging to the tetragonal and hexagonal systems it 
corresponds to the axial plane xz or yz  with the poly- 
hedron in the 'first-order' setting. A diagonal mirror 
plane corresponds to the remaining, third type of 
position. In C2v two nonequivalent mirror planes, 
mutually orthogonal but containing different numbers 
of vertices, are distinguished by v' and v". 

For the polyhedra represented in Fig. 2 the axial 
digyre or mirror plane (ma or v') is always vertical 
in the plane of paper. It is important to note that the 
cube does not have the standard crystallographic ori- 
entation: il~ is oriented like a 'first-order' tetragonal 
prism, to facilitate comparison with its derivative 
polyhedra of subgroup symmetries. Where no letters 
in italics are associated with the running p.g. number 
even though multiple choice of orientation is possible, 
the alternatives are all Z-isomorphic. 

The entries for (V-1)111, which give the numbers 
of nonequivalent sets of vertices of the unsubstituted 
polyhedron, can serve to check orientation of the 
vertices relative to the symmetry elements. 

In Tables 6 to 45 the polyhedra are grouped so as to 
effect a maximum economy of space. Duplication due 
to Z-isomorphism has been eliminated by suitable 
entries and footnotes in the tables, and by listing 
additional Z-isomorphisms in Table 46. In Table 12 
the entries 31 and 19 for 24-1 signify that the N values 
for 24-1 (29) and 24-1 (18) are the same as for 24-1 (31) 
and 24-1 (19) respectively. 

Table 46. Z-equivalences for polyhedra o f  Table 5 

4-1  (15, 14a, 14d, 13, 12)---'4-2 ( 1 4 ) . -  4-1  (11, 10, 9 ) = 4 - 2  (10). 
- 4-1  (8mha, 7maa, 6va, 53)= 4-2  (7). - 4-1  (8mhd, 7mdd, 6vd, 
5d) = 4-2  (6). - 4-1  (7mha, 4ma, 3a)= 4-2  (4). - 4-1  (7mhd, 5v, 
4rod, 3v, 3cl, 2 ) =  4 -2  (3). - 4-1  (4mh)= 4-2  (1). 

6-1 (27, 25, 24, 20a, 2 0 d ) = 6 - 2  (26 )=  6-4  (20). - 6-1 (26a, 
19ma, 18a)= 6-2  (19)= 6-4 (19). - 6-1 (26d, 19rod, 18d)= 6-2  
( 1 8 ) = 6 - 4  ( 1 8 ) . - 6 - 1  (23, 2 1 , 1 7 ) = 6 - 2  (22 )=6-4  (17) . -  6-1 (22, 
1 6 ) = 6 - 2  ( 1 6 ) = 6 - 4  (16). - 6-1 (8, 7mad, 6, 5a, 5 d ) = 6 - 2  (7) 
= 6--4 (6vd). - 6-1 (7mha, 4ma, 3a) = 6 -2  (4ma) = 6-4  (4md). - 
6-1 (7mhd, 5v, 4md, 3v, 3d, 2 ) =  6 -2  (4mh, 3)= 6-4  (3d). - 6-1 
(4mh) = 6 - 4  (I). 
Subgroups. 6-4  (20): 19, 18, 17, 16, 5d, 4ma, 3d=2 .  - 6-4  (15): 
14a, 14d, 13, 12, 11, 10, 9, 8ma, 8md, 7maa, 7mdd=6oa,  7mad= 
5a, 6vd= 5d, 4ma, 4rod= 3a, 3d= 2. - 6-4 (14d) : 10, 7maa, 6vd, 
4ma, 3a, 3d. 

Subgroups. 7-2  (19ma): 16, 4ma. - 7-2  (7mad) : 4ma, 4 m d =  3v. 

Table 46 (cont.) 

8--4 ( 1 4 ) = 8 - 1  (15ma). - 8--4 ( 1 0 ) = 8 - 1  (11). - 8--4 (7, 6 ) = 8 - 1  
(Smha). - 8--4 (4, 33)= 8-1 (7mha). - 8-4 (3v)= 8-1 (Tmhd). - 
8-5  = 8-2  for  19, 18, 16. - 8-5  (26)= 8-2  (20). - 8-5  (22)= 8-2  
(17). - 8-5  ( 7 ) = 8 - 2  (7mad). - 8-5  ( 4 m a ) = 8 - 2  (4ma). - 8-5  
(4mh, 3 ) =  8-2  (4rod). 
Subgroups. 8-1 (64a): 60, 13ma, 12d, 9, 7maa, 6vd, 4ma, 3v = 
3d. - 8-1 (7maa): 4ma, 3v. - 8-2  (31): 28, 19, 16, 14d, 10, 7maa, 
6vd, 4ma, 3a. - 8-2  (20): 19, 18, 17, 16, 5a, 4ma, 3a=2 .  - 8-2  
(15): 14a= 12, 14d= 13, 11, 10=9,  8mha, 8mhd, 7maa, 7todd= 
6va = 6vd= 5d, 7mad= 5a, 4ma, 4rod = 3a = 3d= 2. - 8-2  (14d) : 
10, 7maa, 6vd, 4ma, 3a=3d.  - 8-2  (8mha): 7maa, 7mad=5a,  
6va = 5d, 4ma, 4 m d =  3a = 2. 

Subgroups. 9-2  (13ma): 9, 7maa, 4ma, 3. - 9-5  (19): 16, 4ma. 

10-2 = 10--4 for  36, 35, 33, 4mh, 4ma, 3. - 10-2 (43)= 10--4 (37) 
= 10-1 (44).  - 10-2 ( 3 9 ) =  10-4 ( 3 4 ) =  10-1 (40). - 10-4 ( 3 6 ) =  
10-1 (43a). - 10-4 (35)= 10-1 (43d). - 10-4 (33)= 10-1 (39). - 
10-2 ( 7 ) =  10-4 ( 5 ) =  10-9 ( 6 ) =  10-1 (8). - 10-4 (4mh, 3, 2 ) =  
10-6 ( 3 ) = 1 0 - 1  (7mhd). - 10-4 ( 4 m a ) = 1 0 - 6  (4mh)=lO-1  
(7mha). - 10-6 ( 7 ) = 1 0 - 7  (53). - 10-6 (4ma)=10-8  ( 4 ) = 1 0 - 9  
(4) = 10-7 (4ma). - 10-8 (19) = 10-11 (19). - 10-8 (16) = 10-3 
(16). - 10-9 (64)= 10-7 (64d). - 1 0 - 9 =  10-7 for 60, 9, 3v, 3d. 
- 10-9 (13)= 10-7 (13ma). - 10-9 (12)= 10-7 (12d). - 10-9 (7) 
= 10-7 (Tmaa). 
Subgroups. 10-7 (64d) : 60, 13ma, 12d, 9, 7maa, 6vd, 4ma, 3v, 3d. 

11-3 (7) = 11-6 (7) = 11-2 (7mad). - 11-3 (4mh) = 11-6 (4my") 
= 1 1 - 2  (4ma). - 11-3 (4md, 3 ) =  11-6 (4my', 3 ) =  11-1 (7mha). 
Subgroups. 11-2 (36): 33, 4ma. - 11-5 (19): 16, 4ma. 
Setting. 11-6:  v', m~mS2 • v", mime. 

1 2 - 2 =  12-5 for  31, 28, 19, 16, 10. - 12-2 (14)= 12-6 (14d)= 
12-13 (14a)=12-5  (14cl). - 12-2 ( 7 ) = 1 2 - 6  (7maa)=12-7  
(7mdd, 6vd, 5 d ) = 1 2 - 1 3  ( 7 m d d ) = 1 2 - 5  (7maa). - 12-2 (6)= 
12-6 ( 6 v d ) = 1 2 - 7  (6va)=12-13  (6va)=12-14  (7mhv', 6, 5v, 
5mv') = 12-16 (6vd) = 12-9 (6). - 12-2 (4) = 12-6 (4ma, 4md, 3v, 
3d) = 12-7 (4rod, 3d) = 12-8 (4mcl) = 12-13 (4rod) = 12-5 (4ma). 
- 12-2 (3) = 12-7 (3v, 3a, 2) = 12-8 (3a) = 12-13 (3v, 3a) = 12-14 
(4mh, 4my', 3, 2) = 12-15 (4mh, 3) = 12-16 (3v, 3d) = 12-9 (3). - 
1 2 - 6 =  12-9 for  18, 16. - 12-6 (88)= 12-1 (89). - 12-6 (84)= 
12-1 (85). - 12-6 (25ma)=12-5  (20). - 12-6 (24d)=12-1  
(27rod). - 12-6 (21) = 12-9 (17). - 12-6 (19) = 12-5 (19). - 12-6 
(10) = 12-7 (9) = 12-13 (10) = 12-16 (10) = 12-5 (10). - 12-7 = 
12-5 for 15, 14a, 14d, 13, 12, 11, 10. - 12-7 (8mha)=12-9  (8). - 
12-7 (8mhd)= 12-5 (8mha). - 12-7 (7mha, 7maa)= 12-9 (7). - 
12-7 (Tmhd)=12-5  (7mad). - 12-7 (5v, 5 a ) = 1 2 - 1 4  (7mhv ' ,  
7mv'v", 5 m v " ) = 1 2 - 1 5  ( 7 ) = 1 2 - 9  (5). - 12-7 (4mh, 4ma)= 
12-14 (4my")= 12-15 ( 4 m a ) =  12-9 (4). - 12-8 (7mad)= 12-12 
(5a). - 12-8 (4ma)= 12-12 (4ma). - 12-10 (5v)=  12-10 (7mhd). 
- 12-14 (8 )=  12-3 (8). - 1 2 - 1 5 =  12-9 for  36, 35, 33. - 12-15 
(43)= 12-9 (37). - 12-15 (39)= 12-9 (34). - 12-16 (14 )=  12-12 
(14d). - 12-16 ( 7 ) =  12-12 (7maa). 
Subgroups. 12-9 (37): 36, 35, 34, 33, 5, 4, 3, 2. 

, m62. H 4 4 Setting. 12-14:  v ,  , v , mlm2. 

1 4 - 2 = 1 4 - 9  for  50, 49, 47, 3. - 14-2 ( 5 7 ) = 1 4 - 9  ( 5 1 ) = 1 4 - 1  
(58). - 14-2 (53)=14-9  ( 4 8 ) = 1 4 - 1  (54). - 14-9 (50)=14-1  
(573). - 14-9 (49)- 14-1 (57d). - 14-9 (47)= 14-1 (53). - 14-2 
(7) = 14-7 (6vd) = 14-9 (5) = 14-3 (6va). - 14-2 (4mh) = 14-7 
(3d) = 14-8 (3, 2 ) =  14-9 (3, 2 ) =  14-3 (3a). - 14-2 (4ma)= 14-7 
(3v) = 14-9 ( 4 ) =  14-3 (3d). - 14-7 = 14-3 for 16, 10. - 14-7 = 
14-6 for  84, 25ma, 24d, 21. - 14-7 (88)= 14-6 (88d). - 14-7 
(19) = 14-6 (19ma). - 14-7 (18) = 14-8 (18) = 14-6 (18d). - 14-7 
(14d) = 14-3 (14a). - 14-7 (7mad) = 14-3 (7mdd). - 14-7 (4ma, 
4rod) = 14-3 (4md). - 14-8 = 14-3 for  20, 19, 17, 1 6 . -  14-8 (5) 
= 14-3 (5a). - 14-8 ( 4 ) =  14-3 (4ma). 
Subgroups. 14-3 (31): 28, 19, 16, 14d, 10, 7maa, 6vd, 4ma, 3d. 

1 6 - 6 =  16-3 for  19, 16. - 16-6 (4ma)= 16-2 (4ma). 
Subgroups. 16-1 (105d): 101, 63ma, 62d, 59, 13ma, 12d, 9 ,  
7maa, 6vd, 4ma, 3v = 3d. - 16-1 (64d): 60, 13ma, 9, 7maa, 4ma, 
3v. - 16-2 (64d): 60, 13ma, 12d, 9, 7maa, 6vd, 4ma, 3d=3v .  
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Table 46. (eont) 

18-2 (26)= 18-1 (27ma).- 18-2 (22)= 18-1 (23). - 18-2 (19)= 
18-1 (19ma). - 18-2 (18)= 18-1 (18d). - 18-2 (16)= 18-1 (16). 
- 18-2 (7mha)= 18-1 (Smha). - 18-2 (4mh, 3)= 18-1 (7mhd). - 
18-2 (4ma)= 18-1 (7mha). 

Note:  For 12-14 the p.g. symbols 5my" and 5my'" specify the 
positions of the two nonequivalent mirror planes. 

The partitions are arranged in the ascending order 
of C(V;H) .  Where one value of the multinomial 
coefficient corresponds to several partitions, a parti- 
tion with larger component numbers preceeds one with 
smaller component numbers, e.g. the partition 4~1 a 
preceeds 3122, C(7; 4113) =7!/4!1 !1 !1!=210, C(7; 3222) 
=7!/3!2!2! =210. 

Enumeration of pairs of enantiomorphs 

Consider the complete set of isomeric configurations 
on a polyhedron that belong to a particular H(V) .  
The total number N of these configurations will be 
the sum of the number of configurations N + containing 
an m or i and the number of configurations N ° not 
containing m or i. The configurations not containing 
m or i will occur in pairs, hence N ° is an even number. 

When the p.g. Gm assumed for the symmetry of the 
polyhedron contains a reflexion operation, N(Gm)= 
N + + ½N °, i.e. no distinction is made between enantio- 
morphs (relative to m) and each pair of enantiomorphs 
is counted as one configuration. When instead of Gm 
one assumes the highest purely rotational subgroup 
G, ~ Gin, then N ( G r ) = N  + + N  °. The number of pairs 
of  enantiomorphs ½N ° is then equal to N(Gr)-N(Gm) 

4.~i (50) 

cr -4 

C) 

-12 

4L 

-16 

! I 

o 2b ' 4b ~o 

q 

Fig. 3. Variation of log 100R (see text) with q for configurations 
Av_~Bq of large V. 

and is obtained directly by subtracting the appropriate 
tabulated values. For example, the GmlGr and 
N(Gm)IN(Gr) pairs for the four polyhedra with V=8 
for which the values of N e and ½N ° have been listed 
by Marchi et al. (1943), are: 

Cube 8-2: OhiO, N[8-2(32)]IN[8--2(30)] 
Square antiprism 8-1(64): D4aID4, 
N[8--l(64a)]lN[8-1(12d)] = N[8--2(14a)] 
Dodecadeltahedron 8-2(14): DzaID2, 

N[8-2( 14d)]lN[8-2(6)] = N[8--2(7mdd)] 
Bicapped trigonal prism 8-5: DahlD3, 

N [8-5(26)] = N[8-2(20)]l N[8-5( 18)] = N [8-2( 18)]. 

Seven of the eight N values required are tabulated 
under only one polyhedron, the cube. The advantage 
of using the cycle-index method is thus apparent. 

In a completely analogous way one can determine 
the number of pairs related by other elements of 
symmetry, e.g. in ~ and 3 (enantiomorphigm relative 
to i) or in 422 and 222 (discrimination against 4). 

Polyhedra with large values of V 

Polyhedra of cubic or icosahedral symmetry exist in 
which no vertices are located on symmetry elements, 
hence no binary or higher s-products occur in the Z- 
polynomials. Examples among the semiregular solids 
are the snub cube, the truncated cuboctahedron, the 
snub dodecahedron, and the truncated icosidodeca- 
hedron: 

~--1(30). 432 z = ( 1 )  (s ~ 12 s 1 + % 2  +Ssa+6s  6) 
48-1" m3m Z=@-~) (s~S+ 19s~+8s3~6+ 12s4X2+8868) 
60-1(45)" 532 Z=(6-~) (s 6° + 15s] ° + 20s~ ° + 24s~ 2) 
120-1" 53m Z=(rk6 ) ( s12°+31s6°+20s  4° 

+ 248] 4 + 208~ ° + 24s I~). 

Such polyhedra are well suited for demonstrating the 
rapidly diminishing effect of symmetry with increasing 
C(V; I1), i.e. with increasing complexity of the 'chem- 
ical composition'. In the simplest case, that of the 
binary compositions A v_qB~, the generating functions 
are f ,  = (x'l + x~) ~", i, = V/n. The values of N [ ( V -  q)lqq 
are given by the coefficients of the terms xV-qx~ in the 
Z expansions. These coefficients in turn are integral 
multiples of the binomial coefficients C(V, q). Since the 
values of C(V,q)  increase steeply with V/q, the Z are 
dominated by the f v  and f v /2  terms. Because of this 
an idea of how much the terms arising from symmetry 
contribute to N [ ( V - q ) l q q  can be obtained by plotting 
log 100R=log lOOkfV/2/f v against q (Fig. 3). The R 
ratios are, respectively, 9C(12, q)/C(24, 2q), 19C(24, q)/ 
C(48, 2q), 15C(30,q)/C(60,2q),  and 31C(60,q)/  
C(120, 2q). It is seen that for the snub cube the relative 
contribution of the f v /2  term varies over more than 
three, for the truncated cuboctahedron over about 
seven, for the snub dodecahedron over almost nine, 
and for the truncated icosidodecahedron over about 
18 orders of magnitude. The contribution of this term. 
which is greater than 1% o f f  v up to q,~ 7 and which 
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completely overwhelms f / f o r  q = 0  and 1, thus falls 
off very rapidly with q. If the cubic or icosahedral p.g. 
is purely rotational, 432 or 532, then at q =  V/2 for 
any polyhedron (or assembly of points) of this sym- 
metry with no vertex (point) on a rotation axis 
½(1-V)log 2 - ( 3  log e) /4V+log k < l o g  R < ½ ( 1 -  V) 
log 2 +  log k, where k = 9  for 432 and 15 for 532. The 
linearity of log R improves asymptotically as V in- 
creases. This expression shows that the effect of sym- 
metry on N tends to vanish even in point groups of high 
symmetry if V is sufficiently large. For V=240 and 
p.g. 532, for example, log R ~ - 34-80, which means that 
N(A120B120)" C(240,120),-~ 1072, so that the effect of 
symmetry relative to N is completely negligible. 

We are indebted to Professor J. D. H. Donnay for a 
number of constructive comments on the draft manu- 
script. The costs of computing were defrayed by the Na- 
tional Research Council of Canada through a grant in 
aid of research, and by a grant from IBM Canada Ltd. 
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Use of Negative Quartet Cosine Invariants as a Phasing Figure of Merit: NQEST 
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Recent theoretical advances in the identification of those cosine invariants cos (Oh + Ok + 01-~- Ore) 
which are probably negative suggest algorithms for the calculation of a figure of merit which is sensitive 
to the integrity of a phase set. The negative quartet figure of merit, NQEST, defined here is of particular 
utility in conjunction with fast multi-solution tangent formula techniques. Development of the methods 
and applications to both known and unknown crystal structures are presented. 

Introduction 

A general methodology of crystal structure determina- 
tion which has found wide application in one form or 

* Present Address: Dow Chemical U.S.A., Analytical 
Laboratories, Midland, Michigan 48640. 

another is the multi-solution tangent refinement tech- 
nique. Although the actual procedures employed within 
the general framework of the method may vary widely, 
the use of the tangent formula (Karle & Hauptman, 
1956) to extend and refine a number of plausible basis 
sets of phases is a common feature to all. On one end 
of the spectrum are those procedures which introduce 


